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Abstract

Two different models to analyze the natural convection in a confined fluid overlying a porous media were compared.
The first approach used the Navier—Stokes equation and Darcy’s law coupled by Beavers and Joseph (B-J) interfacial
boundary condition. Instead, the second approach considered the Brinkman extended Darcy’s law together with the
continuity of stress and velocity in the fluid/porous medium dividing surface. The numerical predictions were mainly
used to analyze the effects of the Rayleigh and Darcy numbers on the local and average Nusselt numbers of the cold and
hot walls. Significant differences between the overall average Nusselt numbers were found when the Rayleigh and Darcy
numbers were large enough. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

A thorough understanding of the physics of buoy-
ancy-driven flows in fluids overlying porous media is
essential when designing thermal insulation systems,
grain stores in which poisonous gases such as phos-
phine are used to kill insect pests, thermal energy
storage systems. On a more fundamental level, such
systems demand attention because there remain un-
solved problems regarding the momentum boundary
conditions at the interface of the fluid and porous
layers. For example, a little-addressed issue concerns
the validity of the assumption of local thermodynamic
equilibrium between the interstitial fluid and the solid
phase [1].

Several studies of buoyancy-driven flows in two-di-
mensional fluid/porous systems have been reported, i.e.,
[2-7]. Singh et al. [8] have presented a numerical study
of three-dimensional natural convection in a confined
fluid overlying a porous layer using the Brinkman-ex-
tended Darcy’s formulation. In the works reported
above, the authors generally used one of two ap-
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proaches to define the momentum boundary conditions
at the fluid/porous medium interface. Most frequently
it is the approach that involves Brinkman’s [9] “cor-
rection” to Darcy’s law that is deemed to apply in the
porous layer, that has been used. In this case, the dif-
ferential equations that govern the momentum trans-
port in both the fluid and porous layers are rendered in
the same order so that it is possible to match the rates
of strain in both regions. In many cases, when Brink-
man’s [8] correction is used, the effective viscosity of
the porous layer is introduced as an empirical param-
eter. Recently, Ochoa-Tapia and Whitaker [10] derived
a stress jump condition to couple Navier-Stokes
equation and Darcy’s equation with the Brinkman’s
correction, and it was found there is not theoretical
reason to use the effective viscosity as an empirical
parameter.

A second method to match the momentum equations
at the fluid/porous medium inter-region is to make use
of an empirical expression proposed by Beavers and
Joseph (B-J) [11]. This expression relates the rate of
strain in the fluid phase to the difference between the
tangential velocities in the fluid and porous layers ad-
jacent to the inter region. The B-J boundary condition
also requires the determination of an empirical param-
eter. One reason for the difficulty in properly defining
the momentum boundary condition at the fluid/porous
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Nomenclature

Da Darcy number (P,,/L?)
i,j,k Cartesian unit vectors

K, dimensionless porous media/fluid conduc-
tivity ratio

L, length of the container in the x direction (m)

Pio permeability of fluid 7 in porous media
o (m?)

Pr Prandtl number (v, /o)

Py dimensionless pressure

Ra Rayleigh number for the porous media

(B, (Th — T)L}/ (2,v,))
temperature (K)

\7) dimensionless velocity vector in the 4
region

X,Y,Z dimensionless Cartesian coordinates (x/L,,
Y/Ly; z/Ls)

Greek symbols

o Beavers and Joseph boundary condition

parameter (dimensionless)

o, thermal diffusivity of fluid (m? s')

¢ dimensionless vorticity vector

Cxs X component of the dimensionless vorticity
vector in the A region

0, dimensionless temperature in the 4 region

I, viscosity of fluid (kg m™" s7")

v, viscous diffusivity of fluid (m? s7!)

¥, dimensionless vector potential

Yy X component of the dimensionless vector

potential in the A region
(),  superficial average of the y, variable in re-

gion A

(¥,);  intrinsic average of the i, variable in region
A

Subscripts

c cold wall

h hot wall

y fluid

n clear fluid region

Y, n or w

) porous medium region

layer interface may be the inadequate definitions of
volume-averaged quantities in this region (see, for ex-
ample, [1]).

The objective in this work is to use the B-J [11]
boundary condition to analyze the natural convection
in a three-dimensional enclosure containing a fluid and
a porous medium. The numerical predictions are
compared with the results obtained from the solution
that uses the Brinkman correction factor [8].

2. Theory
2.1. Governing differential equations

The system is formed by a fluid (y-phase) and a
granular material (g-phase) distributed in two layers
(Fig. 1). The upper layer is a clear fluid and the lower
layer is a porous media formed by the two phases. To
avoid the complexity of dealing with the geometric de-
tails of the porous medium, we model the natural con-
vection process in terms of average transport equations
valid in the porous medium (region ®) and the homo-
geneous fluid (region 5). The average transport equa-
tions for the clear fluid region have the same form that
the point transport equations as long as some length
constraints are satisfied [10]. The x-axis is the direction
of gravity, while the y- and z-axes are in the horizontal
plane. The Boussinesq approximation is imposed:
physical properties are constants, but density is in the

body force term. Also, the analysis is restricted to iso-
tropic heat and momentum transport in the porous re-
gion.

In this work, Darcy’s law is used to represent the
momentum transport in the porous medium. In this
expression we have not included the inertial terms as
suggested by the theoretical development of Whitaker
[12]. Under these considerations the dimensionless
governing differential equations are the following:

Porous layer (w-region):

Continuity equation

V-v, =0. (1)
Darcy’s equation

V, = —DaVp, + DaRa0,i. (2)
One-equation model for energy

V- (Vo) = K, V?0,,. (3)

Homogeneous fluid (-region):
Continuity equation

Vv, =0. (4)
Navier-Stokes equation

V- (VW) = —PrVp, + PrV?v, + PrRa 0,i. (5)
Energy-equation

V- (v,0,) = V?*0,. (6)
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o 4

Lg Fluid region

A

Fig. 1. System under analysis, porous region details and coordinate system.

The dimensionless velocity vector, temperature and
pressure variables introduced in Egs. (1)-(6) are:

v, = <v,’>/ 0, = <T)>/ - Th L= <p/>; (7)
A OL',/LX ) A Th — Tc ) g ‘IL',OL',/LJ% .
Here (v/), is the superficial average of the fluid dimen-

sional velocity, and the subscript A indicates the w-re-
gion or the n-region. The characteristic length L, is the
height of the system. 7;, and T indicate the temperatures
at which the hot (¥ = 0) and cold (Y = L,/L,) walls are
kept. Also, we have used the thermal diffusivity o, and
viscosity of the fluid u, to define the characteristic ve-
locity and pressure.

In Eq. (7) the symbols (), and ()] represent the
superficial average and the intrinsic phase average of the
point variables V., respectively [13]. In the derivation of
Eq. (3), the thermal equilibrium principle was invoked
[1]. Therefore, one temperature is used as a reasonable
approximation for the average temperatures of both
phases in the homogeneous porous region: (7)), =
(T,)! = (T,);. In Eq. (3), K,, is the dimensionless effec-
tive conductivity in the porous medium.

The Darcy, Rayleigh and Prandtl numbers are de-
fined by:

P, (T — T.)L3 )
Y Ra:gﬁ}( h C) x’ Pr:% (8)

2 b
L oV,

Da =

i

2.2. Boundary conditions

For the velocity, non-slip and no penetration
boundary conditions were imposed at the container
walls. For the energy equation the vertical wallsat ¥ = 0
and Y =L,/L, were kept at T, and T, respectively. In
the other four walls non-zero flux boundary conditions
were imposed.

For the inter-region between the clear fluid and the
porous medium located at X = X, the following con-
ditions for temperature and velocity were used:

Hw = 67[7 (9)

— Dy * Knvew = —Nyy, - vem (10)

- nw'y Vo = _nm}' : vr/7 (1 1)
ov,, o .

— t(m] . & = \/—Ba-tmn . (V(u — V']) for trun =0 k. (12)

In Egs. (10) and (11) n,,, is the unit normal vector at the
dividing surface between the porous and the clear fluid
directed from the w-region to the n-region. In Eq. (12),
that is an extension of the semi empirical B-J boundary
condition for momentum, « is the B-J parameter, and
the tangent unit vectors (j or k) are indicated by t,,.
Other authors have solved the same problem using
Brinkman-extended Darcy’s formulation [8]. The main
difference of the Brinkman-extended Darcy’s model with
respect to the formulation presented in this work is
the inclusion of Brinkman’s term in Eq. (2). This adds a
velocity Laplacian term in the momentum equation that
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enables the use of the continuity of stress tensor and ve-
locity in the interfacial region. Also, with this formula-
tion, non-slip boundary conditions can be applied easily
at the container wall in contact with the porous medium.

2.3. Vorticity—potential vector formulation

To avoid the solution of the problem defined in terms
of primitive variables, by Egs. (1)-(6) subjected to the
boundary conditions Egs. (9)-(12), we used the vor-
ticity—vector potential approach [14,15]. The relation-
ships between velocity with vorticity and the potential
are:

(,=Vxv, foril=uw,n, (13)
v, =V xV¥, foril=aw,n. (14)

Introducing Egs. (13) and (14) into the momentum
transport and the continuity equations along with some
manipulation yields the new formulation for the mo-
mentum transport problem:

Porous layer (w-region):

VY, = —(,, (15)
—{,+DaRaV x (i0,) = 0. (16)
Fluid layer (y-region):

VY, = —(, (17)
vy VL, =&, Vv, = PV, + RaPrV x (0,i). (18)

It should be noted that it is not necessary to solve a
vector vorticity differential equation in the porous media
region. In the approach followed in this work the vor-
ticity was evaluated with Eq. (16) using the temperature
field data available.

2.4. Boundary conditions for vorticity

For the boundary condition for each component of
the vector {; at the container walls we followed the work
of Mallinson and de Vahl Davis [16]:

rY, rY,
on?’ on?

Cn = 07 Ctl = Ctz = (19)
Here n indicates the normal Cartesian coordinate at the
wall (the Cartesian coordinate that is kept constant at the
surface) and # and £, are the other two coordinates.
The vorticity components for the clear fluid at the plane
located at X = X; were evaluated from the following
expressions derived from the normal velocity continuity
condition and the B-J boundary conditions, Egs. (11) and
(12):

oo (0¥ ow\  ov. av,
o \oy oz ), oy oz ),

ow Ov
+ (H—&)/ (20)

C _ o a'{ly - 6& o % o alPX
" Upa|\ ox oY ), ax oY/,
Ou,
- 21
2z’ 21
(= % |(%%x 0¥z\ (0¥x 0¥
o ba|\ 0z X ), oz X ),
_ Oy (22)

oY’
2.5. Boundary conditions for the vector potential

To enforce no fluid penetration at the container
walls, the boundary conditions for each component of
the vector ¥, were chosen as follows:
oY,

on

The interfacial boundary conditions at the plane X = X;
where imposed through the solution of Egs. (15) and
(13) at the interfacial surface using the corresponding
value of the vorticity.

=0 and ¥Y,=Y¥,=0. (23)

2.6. Nusselt number

From the practical point of view, it is interesting to
evaluate the heat transfer rate resulting from the tem-
perature difference between the hot and cold walls. In
this work the heat transfer effects are reported in terms
of the following average Nusselt number at the cold and
hot walls:

Width average Nusselt number

Ly

o Lz/Lx
Nux(X) y*= L_ / Nu(X,Z) |yx dz. (24&)
Z JO

Overall average Nusselt number

o L 1 Lz/Ly
Na |p.= 22 / / Nu(X,Z) |y- dZdX. (24b)
Lz Jo Jo

In Egs. (24a) and (24b) the subscript Y* indicates eval-
vationat Y =0or Y = Ly/Ly , and Nu(X, Z) is the local
Nusselt number at the cold or hot walls given by:

Nu(X,Z):h]f—X

" 20,

- <

sy for0<x <X,

1 /20, a0, B

—§<6Y+Kway)7 atX =X%, (25
a0,

—K, =2, forX,<X<l.

(Uay7 or S<

3. Numerical solution

The nonlinear system of governing differential equa-
tions of the vector potential, the vorticity vector and the
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temperature was solved using a procedure similar to that
presented by Mallinson and de Vahl Davis [14] for
natural convective flows of single-phase fluids. In that
method, the differential equations are transformed into
parabolic form by adding false transient terms and then
represented in finite difference form. The discretized
equations are then iterated, until steady state, using the
alternating direction implicit (ADI) method proposed by
Peaceman and Rachford [17]. The described procedure
allows the decoupling of the differential equations if
information of previous iterations is used. Therefore,
initial values of the fields are needed and different se-
quences can be attempted to solve the problem.

3.1. The solution of the model that involves the B-J
interfacial boundary condition

For the solution of this model, the equations were
solved in the following order.

(a) The temperature field was obtained by solving
Egs. (3) and (6). The first ADI march was in the vertical
direction, it started one node after X = 0 and it finished
one node before X = 1. The interfacial node at X = X,
was not included in this sweep. When required, the
previous iteration values of the temperature at the walls
and X = X, were used. Afterwards the marching in the ¥
and Z directions were performed. Finally, the tempera-
ture fields at X; and the wall container were updated
using Eqgs. (9) and (10) and the adiabatic wall con-
ditions.

(b) The components of the vorticity vector for the
clear fluid region were obtained by solving Eq. (18) using
the temperature and velocity fields obtained in the pre-
vious iteration. In this case, the values for the vorticity
components obtained from Eqgs. (20) and (21), using
values of the potential vectors from the previous itera-
tion, were used as boundary conditions at X;. Therefore,
the ADI march in the X direction was similar to the one
described above for temperature. The vorticity vector
field for the porous medium region was updated by di-
rect calculation from Eq. (16), and using the tempera-
ture field from the previous iteration.

(c) The vector potential components for the upper
region were obtained from the solution of Eq. (17) using
a similar ADI procedure. For the X direction march, the
boundary condition at X; was not imposed directly. In-
stead, the governing differential equation was discretized
using backward Taylor series expansion in X = X;.

A similar procedure, but using forward Taylor series
expansion at X = X;, was used for the solution of Eq.
(15) to update the porous medium fields of the vector
potential components.

The iteration procedure was repeated as many times
as needed to satisfy the convergence criterion that was
established for each one of the variables following
Mallinson and de Vahl Davis [14]:

LR K gy
ij

<1x 1073 (26)

=1 =1 k=1 | P

Here M, indicates the number of nodes in the & direc-
tion, Ay, is the correction to the field obtained with the
ADI method after the marching in the three directions in
iteration N, and ¢ is the maximum value of the field
after the iteration N. This convergence criterion was
imposed to all variables in the clear fluid and the porous
region: vector potential, vorticity vector and tempera-
ture. The vector potential interfacial boundary condi-
tions were not imposed directly during the iterative
procedure. Therefore, after the convergence criteria gi-
ven by Eq. (26) were satisfied, it was double checked that
the B-J boundary conditions (Egs. (20)—(22)) were sat-
isfied.

In the following section, the predictions of the model
considering the Darcy’s law for the momentum trans-
port in the porous medium — described by Egs. (1)—(6)
and (9)—(12) — are compared with the results obtained
here with the model that uses Darcy’s law with the
Brinkman correction factor. For the numerical solution,
of this second approach to model the natural convection
problem, we used an analogous numerical scheme to the
one just described above and proposed by Singh et al.
[8]. In our simulations, convective terms were not in-
cluded in the momentum equations for the porous me-
dium. The convergence criterion given by Eq. (26) was
used for the calculation of the two models.

Each one of the results that are presented in this
paper was obtained with four different mesh sizes with
regular spacing: 11°, 213, 413 and 813 nodes. A signifi-
cant difference exists between the temperature and ve-
locity fields obtained with the 113, 213 and 41° node
grids. The differences between the fields predicted with
413 and 813 node grids are negligible. Since the error is
augmented by the numerical differentiation needed to
obtain the flux at the cold and hot walls, for each given
Ra and Da, the convergence analysis was performed by
the comparison of the overall Nusselt numbers obtained
with the four mesh sizes.

The false transient parameters used in the numerical
simulations are given below:

Region For the For the For the
potential vorticity energy
equations equations equations

Clear fluid 1.0 0.1 5.0

Porous 25 No needed 5.0

medium

With these parameters, convergence was obtained for
the computer runs that used 113, 213, 41° and 813 grid
points. However, for the solution with 813 grid points of
the model that includes the B-J condition, it was
necessary to use the parameters 0.5 and 12.5 for the
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Table 1

Effect of Rayleigh number, Darcy number and grid size on the overall Nusselt numbers of the hot and cold walls predicted by the
solution of the models with Darcy’s equation and the model with Darcy’s equation plus the Brinkman correction

Grid points Ra Brinkman B-J with « = 1.0
Hot Cold Adopted Hot Cold Adopted
Da =10"*
113 10* 1.422 1.78 1.1 1.44
213 104 1.422 1.60* 1.29* 1.46*
413 10* 1.42¢ 1.50% 1.37¢ 1.45%
813 10* 1.42¢ 1.45% 1.41# 1.44%
00 10* 1.42 1.40 1.42 1.45 1.43 1.44
113 10° 3.62 3.83 2.69 3.24
213 10° 3.34 3.66* 3.10 3.46*
413 10° 3.20° 3.35% 3.14° 3.30*
813 10° 3.17% 3.22¢ 3.18 3.23¢
00 10° 3.10 3.07 3.09 3.22 3.15 3.18
13 10° 6.26 5.45 4.04 4.93
213 10 7.45% 7.30 6.92 7.05
413 10° 6.85° 7.11* 6.79* 7.13*
813 10° 6.54* 6.67* 6.67* 6.81*
00 10° 6.24 6.23 6.24 6.54 6.49 6.51
Da =103
13 10* 1.51 1.83* 1.2 1.51
213 104 1.522 1.66* 1.39* 1.54
413 10* 1.52¢ 1.57* 1.46* 1.52*
813 104 1.522 1.54* 1.49* 1.52*
00 10* 1.52 1.49 1.51 1.52 1.52 1.52
113 10° 4.02 4.10 3.39 3.77
213 10° 3.81¢ 4.00* 3.84 4.11*
413 10° 3.64° 3.722 3.91° 3.99*
813 10° 3.59° 3.62% 3.932 3.94*
00 10° 3.51 3.48 3.5 3.95 3.87 3.91
113 10 6.56 6.60 5.94° 7.09
213 10° 8.74 8.73 8.88% 10.0
413 10° 8.48° 8.53* 10.3* 11.1*
813 10° 8.05° 8.07* 11.1# 11.1#
00 10° 7.62 7.61 7.62 11.8 11.3 11.5

#Indicates the values used in the extrapolation to obtain the values reported in the rows indicated by “co”.

potential equations and the vorticity equations respec-
tively.

Following the work of Singh et al. [8], the false
transient parameters were used together with a time step
given by At = gy (AX )2. The oy parameter, which is
needed to obtain convergent and stable solutions for all
grid sizes, was found to be 2.4. It is possible, that there
are another sets of parameters that allow a faster con-
vergence. However, with the set of numerical parameters
described above convergence was reached for all grid
sizes with any combination of the physical parameters
used in the analysis.

4. Results and discussion

To completely define the heat and fluid flow
phenomena in the system under study is necessary to fix

the parameters: Ra, Pr, Da, L,/L, and L./L.. Further-
more, because the cavity contains a two-region struc-
ture, it is necessary to define the position of the interface,
X, the conductivity ratio, K, and the parameter, «, when
the B-J boundary condition is used.

We have mainly analyzed the effect of Darcy and
Rayleigh numbers on the momentum and heat trans-
port, keeping constant the following parameters:

Pr=07, L,/L =10, L/L =10,
X, =05 o=1 K,=1

Because of the values of the Pr and K, parameters, the
system is similar to the one found in silos for storing
food grains. We have restricted the simulations to
K, =1 because Singh et al. [§] demonstrated that vari-
ations of order 10 above of this number give similar
results in the overall wall Nusselt numbers.
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Fig. 2. Effect of Rayleigh number on the isotherms at the plane Y = 0.5 for Darcy’s numbers: (a) 10~#; (b) 10-3. The continuous lines
indicate the predictions by the model without the Brinkman correction term, and the broken lines indicate the prediction by the model
with the Brinkman correction term. Other parameters are o = 1 and K,, = 1.

The results reported in this section are for a cubic
cavity with half of the volume filled with a porous me-
dium and two of the vertical opposite walls kept at
constant temperature: hot wall and cold wall. The zero
heat flux boundary condition was imposed in the other
four walls.

The predictions resulting from the approach stated in
this work, that uses the B-J boundary conditions, are
compared with the predictions obtained from the solu-
tion of the model that includes the Brinkman correction
term in the Darcy’s law reported by Singh et al. [8].

As mentioned above the B-J boundary condition
parameter was fixed to obtain « = 1 for all the results
shown lines below. However, previously numerical
simulations were obtained with the B-J parameter in the
range 0.01 < o < 1. The results suggest that, for a given
situation, there is not a « value that will cause that the
B-J approach can yield the same temperature and ve-
locity profiles than the Brinkman extension approach.
Therefore all temperature profiles in this work were
obtained with « = 1.

The convergence of the numerical solution is shown in
Table 1 in terms of the overall Nusselt numbers of the hot
and cold walls. For each pair of Ra and Da values, the

Nusselt numbers of both walls have a tendency to the
value reported in the “adopted” column. The Nusselt
numbers that are taken for the comparison between the
Darcy’s and Brinkman’s approaches and to test for the
accuracy of the overall heat balance were obtained by a
linear extrapolation of the Nusselt number using the in-
verse of the grid points as the independent variable. As
indicated in Table 1, for the extrapolation at Ra = 10°
only the Nusselt numbers predicted from the 41° and 813
node grids were used. For the other cases reported in
Table 1, at least the overall average Nusselt number from
the 213, 413 and 81° grids were used for the extrapolation.

We also solved the problem using finer grids close to
the isothermal walls: i.e., a 100° variable grid mesh with
AZ next to the walls about 1/3 of the constant spacing
corresponding to the 813 grid. The comparison of the
overall average Nusselt numbers indicates that the dif-
ference between the overall average Nusselt number
predictions for the situation with Ra = 10° and
Da = 1073 with both type of grids is 3.3%. This difference
is much smaller than that obtained between the constant
spacing grid predictions from the Darcy’s model and the
obtained from the model with Darcy—Brinkman exten-
sion (49.6%) reported in Table 1. Therefore, the accuracy
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Fig. 3. Effect of Rayleigh number on the local Nusselt at the cold wall (Y = Ly/Ly) for Darcy’s numbers: (a) 107#; (b) 1073. The
continuous lines indicate the predictions by the model without the Brinkman correction term, and the broken lines indicate the
prediction by the model with the Brinkman correction term. Other parameters are « = 1 and K, = 1.

of the results in Table 1 is enough for the purpose of
comparing both approaches of modeling the momentum
transport in the porous medium region.

The results in Table 1 show that, for every given Ra
and Da, the global heat balance in the system is satisfied
within less than 2.2% error. This because the overall
Nusselt numbers of the cold and hot wall have a ten-
dency to the same value as the number of nodes is in-
creased.

Because of the temperature boundary conditions at
Y =0 and Y = 1.0, and the other walls are adiabatic,
most of the changes in the temperature and velocity
occur in the Y direction and therefore, we report the
isotherms in the ¥ = 0.5 plane.

In Fig. 2 the effect of the augment of convection as
the Darcy and Rayleigh numbers are increased is
shown. In this figure, it is clear that the predicted
isotherms from the models with and without the
Brinkman correction term are very similar for any of
the Rayleigh numbers used, as long the Darcy number
is 107*. In Fig. 2 the differences between the isotherms
obtained by the two approaches become larger when
Da is 1073 and Ra is increased. This seems to indicate
that viscous effects through the velocity Laplacian of

Brinkman correction term is not negligible when the
permeability is increased. Most probably, when the
permeability becomes big enough the Brinkman for-
mulation is the correct one.

The temperature profiles predicted by the two ap-
proaches were used to estimate the hot and cold local
Nusselt numbers, as defined by Eq. (25). In Fig. 3 are
shown the predicted Nusselt numbers at the cold wall
(Y =1) for three Rayleigh numbers and two Darcy
numbers. It is clear that, despite the differences shown in
Fig. 2 for the isotherms at the vertical plane ¥ = 0.5,
both approaches lead to similar results for the local heat
transfer rate at the walls. The theoretical predictions of
both models confirmed that the Nusselt number in the
fluid region is quite independent of variations in the
Darcy number, as Singh et al. [8] reported. Although a
change is observed, it is possible to say that the Nusselt
number in the porous medium region is quite insensitive
when the Darcy number changes from 10~ to 1073,

On the other hand, the results shown in Fig. 3 con-
firmed that increases in the Rayleigh number signifi-
cantly augment the Nusselt number.

The changes shown in the contour plots of the local
Nusselt number in Fig. 3 are quite monotonic. How-
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ever, special attention must be paid at the contour
plots corresponding to the predictions from the model
that uses the B-J boundary condition for Ra = 10° and
Da = 1073 (right lower corner). For this particular case,
around the surface that divides the clear fluid region
from the porous region, the B-J model predicts local
Nusselt numbers twice the ones predicted by the
Brinkman correction model. These differences are bet-
ter observed in the tri-dimensional plots of the local
Nusselt at the cold wall shown in Fig. 4. Here it is clear
that B-J model predicts that in the porous medium
near X;, there is a maximum in the Nusselt number.
Fig. 4 also shows that the two models predict a max-
imum for the local Nusselt numbers near the top of the
container.

The presence of a maximum in the maps of Nusselt
numbers is better observed in Fig. 5. Here we have
plotted the width average Nusselt number Nuy(X), as
defined by Eq. (24a), for the hot and cold walls as
function of the vertical position. In Fig. 5(a), it can be
seen that for Da = 10~ the differences between the heat
transfer rate predicted by the two approaches could be
neglected except at the hot wall for Ra = 10°.

In Fig. 5(b) it is obvious that the differences between
the width average Nusselt predicted by the two consid-
ered approaches become larger as the Rayleigh and
Darcy numbers are augmented. The largest differences
were found for Ra = 10° and Da = 1073.

Also, the results in Fig. 5(b) show that, in most cases,
both models predict that the largest effects of the con-
vection are in the bottom of the hot wall and in the top
of the cold wall. However, when Ra = 10° the heat
transfer rate normal to the cold wall near the interface is
pretty close to the one near the top of the container. As
shown in Table 1, the global heat balance is satisfied
with less than 2.5% of error despite the big differences
between the profiles of the width Nusselt number of the
cold and hot walls.

In Table 2 a comparison of the overall average
Nusselt numbers obtained from the three-dimensional

problem with those obtained from the two-dimensional
problem is shown. The same type of convergence anal-
ysis was performed for the two-dimensional predictions.
The comparison shows that the two-dimensional Nusselt
numbers are always bigger than the three-dimensional
predictions as mentioned by Singh et al. [8].

Therefore, there is reason to accept that the two
approaches lead to important differences in the predic-
tion of the global heat transfer effects when the Raleigh
and Darcy numbers are 10° and 103, respectively. Most
probably this difference will become larger if the Da and
Ra are augmented.

All results shown in the previous figures did not take
into consideration inertial effects in the porous medium.
In Fig. 6 we compare the temperature and ¥, contour
plots at Y = 0.5 predicted by the two models when in-
ertial effects are included. The comparison of the upper
plots with the lower plots in Fig. 6 shows that the pre-
dictions by the model with the Brinkman’s correction
are less affected by the inclusion of the inertial terms.
These results suggest the effect that the addition of the
convective terms in the momentum transport equation
of the porous medium will have a significant effect on the
heat transfer rate. Therefore, a systematic study of the
convective effects must be carried out. However, one
must remember that if the convective terms are added to
the momentum equation, it may be necessary to add
other terms to the interfacial boundary condition
[12,18].

5. Conclusions

We presented a comparison of two models to study
heat transport by buoyancy-driven flow in a fluid/porous
medium system contained in a cavity. In the first ap-
proach, the momentum transport was modeled in terms
of the Navier-Stokes and Darcy’s law equation. An
extension of the B-J semi-empirical boundary condition
was used to couple the momentum equations of the clear

20.0& y,
1()_00‘ <
X=0 -
TSR
R
T
(b) X-1 70

Fig. 4. Comparison of the local Nusselt number at the cold wall predicted by: (a) the model with the Brinkman correction term; (b) the
model without the Brinkman correction term. The parameters are Ra = 10°, Da = 1073, « =1 and K,, = 1.
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Fig. 5. Effect of Rayleigh number on the width average Nusselt number Nuy(X) at the hot and cold walls. (a) Da = 107%;
(b) Da = 1073. The continuous lines indicate the predictions by the model without the Brinkman correction term, and the broken
lines indicate the prediction by the model with the Brinkman correction term. Other parameters are « = 1 and K, = 1.

Table 2

Comparison of the overall Nusselt numbers of the system predicted by the solution of the tri-dimensional (3-D) and two-dimensional
(2-D) models with Darcy’s equation and the model with Darcy’s equation plus the Brinkman correction

Ra Da Brinkman B-J with . = 1.0

3-D 2-D 3-D 2-D
10* 10~4 1.41 1.52 1.44 1.56
10* 1073 1.51 1.63 1.52 1.62
10° 10-4 3.09 3.26 3.18 3.39
10° 1073 3.5 3.69 3.91 4.10
10° 1074 6.24 6.35 6.51 6.83
10¢ 1073 7.62 7.78 11.5 114

fluid and porous medium regions. The second approach
considers Darcy’s law with Brinkman’s correction term.
In this case, continuity of velocity and stress were used
as the interfacial boundary conditions.

The numerical solution that involved the finite dif-
ference representation with an ADI scheme was ob-
tained in terms of the vorticity-vector potential
formulation.

The differences between the temperature and velocity
contour plots predicted by the two approaches increase as
the intensity of the fluid motion and the permeability of
the porous media are augmented. From a practical point
of view, the difference between the predictions of the two
models becomes significant when the heat transfer rates
at the walls of the container are compared in the para-
metric region given by Ra > 10° and Da > 1073,
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X=0

Fig. 6. Comparison of potential ¥, and isotherms predicted at ¥ = 0.5 when convective terms are included in the models (continuous
lines) and without convective effects (broken lines). The upper figure data were obtained using the model with Brinkman correction
term. The lower figure data were obtained using the model without Brinkman correction term. The parameters are

Da=10", Ra=10° o=1and K, = 1.

This indicates the necessity of experimental work to
clarify which is the correct form of modeling the mo-
mentum transport in porous media. The experimental
work should be oriented to obtain local average velocity
and temperature measurements. A more systematic
study that involves the simulation with the two ap-
proaches should be used to decide where to take the
measurements.
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